
TrivialUI Documentation
Release 0.0.2

Tim Martin

December 10, 2016

Contents

1 Table of contents 3
1.1 Examples . 3
1.2 Reference . 4

2 Indices and tables 5

Python Module Index 7

i

ii

TrivialUI Documentation, Release 0.0.2

TrivialUI is a Python library that aims to make it as easy as possible to make your Python code into GUI Python code.
It’s not intended as a full replacement for a GUI library like PySide; if you want full control so you can make the
greatest interface, then TrivialUI won’t give you what you want. But if you want a UI when you didn’t even think you
had time to create one, then this might be your thing.

At least, that’s the plan. Currently it’s at a very early stage of development.

Contents 1

TrivialUI Documentation, Release 0.0.2

2 Contents

CHAPTER 1

Table of contents

1.1 Examples

1.1.1 Application main function

If you want to get anything to display, you’ll need to start an application like this:

import TrivialUI

if __name__ == '__main__':
with TrivialUI.Application() as app:

Create your windows here...
pass

1.1.2 Simple dashboard

To have a dashboard with some buttons:

def yo():
print "yo"

class Dashboard(TrivialUI.MainWindow):
widgets = [

TrivialUI.Button("Yo", on_click=yo)
]

def __init__(self):
super(Dashboard, self).__init__(title='Dashboard')

Start the application like this:

with TrivialUI.Application():
window = Dashboard()
window.show()

The on_click of the button takes an ordinary Python callable.

3

TrivialUI Documentation, Release 0.0.2

1.2 Reference

class TrivialUI.GenericProxy(data, children, parent=None, row=0)
The proxy object makes a single piece of Python data navigable in a tree context. This is the base class that uses
Template Method to allow various different sorts of Python data to be navigated in this way.

hasChild(row)
Check whether this dict has an entry for the specified row. In fact, this just checks whether the number of
entries in the collection is sufficient.

class TrivialUI.DictProxy(data, children, parent=None, row=0)
Proxy object for making a dict of dicts navigable in a form usable by PyQt.

This gives nondeterministic ordering, unless you use an OrderedDict.

class TrivialUI.ListModel(data, header=None)
A model object that exposes the model interface that Qt expects, based on a bunch of data provided as (possibly
nested) Python list objects.

The tree structure itself is built up inside of the ListProxy object stored as self.root_item. The tree is constructed
on the fly as Qt queries using the index() method.

TrivialUI.MainWindow
alias of <Mock id=’140131672847568’>

class TrivialUI.TextEdit(name)
Proxy class for creating a QLineEdit. This has to be a distinct class for two reasons:

•It’s used in static initialisation when creating a MainWindow class, so it ends up being constructed before
the Qt application is ready.

•Similarly, it’s used statically where we actually want multiple instances to be created when the MainWin-
dow is created.

4 Chapter 1. Table of contents

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

5

TrivialUI Documentation, Release 0.0.2

6 Chapter 2. Indices and tables

Python Module Index

t
TrivialUI, 4

7

TrivialUI Documentation, Release 0.0.2

8 Python Module Index

Index

D
DictProxy (class in TrivialUI), 4

G
GenericProxy (class in TrivialUI), 4

H
hasChild() (TrivialUI.GenericProxy method), 4

L
ListModel (class in TrivialUI), 4

M
MainWindow (in module TrivialUI), 4

T
TextEdit (class in TrivialUI), 4
TrivialUI (module), 4

9

	Table of contents
	Examples
	Reference

	Indices and tables
	Python Module Index

